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Torsion, Scalar Field, Mass and FRW Cosmology
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In the Einstein–Cartan space U4, an axial vector torsion together with a scalar field con-
nected to a local scale factor have been considered. By combining two particular terms
from the SO(4, 1) Pontryagin density and then modifying it in a SO(3, 1) invariant way,
we get a Lagrangian density with Lagrange multipliers. Then under FRW-cosmological
background, where the scalar field is connected to the source of gravitation, the Euler–
Lagrange equations ultimately give the constancy of the gravitational constant together
with only three kinds of energy densities representing mass, radiation and cosmological
constant. The gravitational constant has been found to be linked with the geometrical
Nieh-Yan density.
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1. INTRODUCTION

At present, standard cosmology starts with two basic assumptions: (i) at suffi-
ciently large scale, matter distribution is spatially homogeneous and isotropic; and
(ii) the large-scale structure of the universe can be described by Einstein’s theory
of gravity. The geometrical evolution of the universe can then be determined by
Einstein’s equations where the energy momentum tensor acts as the source. The
Friedmann–Robertson–Walker (FRW; 1922, 1929, 1935) universe is so far the
most provocative and important cosmological model of the universe. It is also one
of the simplest. It is isotropic, spatially homogeneous, and fluid-filled. The FRW
models serve as an introduction to the study of homogeneous models. A FRW uni-
verse admits a six-parameter group of isometries whose surfaces of transitivity are
space-like three surfaces of constant curvature. Minkowski space, de Sitter space
and anti-de Sitter space are all special cases of the general FRW spaces (Hawking
and Ellis, 1973). When several noninteracting sources are present in the universe,
the total energy momentum tensor that appears on the right-hand side of the
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Einstein’s equation will be the sum of the energy momentum tensor for each of the
sources. Spatial homogeneity and isotropy imply that the energy momentum ten-

sor for the ith source is diagonal and has the form
(i)

Tβ
α= dia[ ρi, −pi, −pi, −pi ].

Here ρi and pi are, respectively, the energy density and the pressure for the ith
source which obey the energy conservation law d(ρia

3) = −pid(a3), where a(t)
is the radius of the universe at time t. The evolution of the energy density of
each component is essentially dependent on the parameter ωi ≡ pi

ρi
. In particular,

ωi = 0, 1
3 or −1, respectively, for non-relativistic mass density, radiation density

or vacuum energy density (Padmanabhan, 2003).
It is well known that if we add the cosmological constant as the only source

of curvature in Einstein’s equation, the resulting spacetime is highly symmetric
and has an interesting geometrical structure. In particular, in the case of positive
cosmological constant, we get the well known de Sitter manifold (Padmanabhan,
2003).

Kibble (1961) and Sciama (1962) pointed out that the Poincaré group, which
is the semi-direct product of translation and Lorentz rotation, is the underlying
gauge group of gravity and found the so-called Einstein–Cartan theory where
mass-energy of matter is related to the curvature and spin of matter is related to
the torsion of spacetime. One major drawback of Poincaré group is that it is a
non–semi-simple group, which implies that there is no Lagrangian yielding its
Yang–Mills equations (Aldrovandi and Kraenkel, 1988). There exists a general
procedure (Aldrovandi and Kraenkel, 1989) to check whether or not a set of field
equations leads to a coherent theory, i.e. a theory that can be quantized. If we
apply it to Yang–Mills equations for non–semi-simple groups, we find that they
are never consistent. Here we see that though the Poincaré group is the classical
group for relativistic kinematics, it cannot be given a quantum version. Now by
minimal addition of extra terms this inconsistent theory can be transformed to a
good theory and we find a Lagrangian of a gauge theory for a semi-simple group,
the de Sitter group (Aldrovandi and Pereira, 1988). In this way, the de Sitter gauge
theory comes up as the corrected Poincaré gauge theory. Alternatively, there are
other approaches where de Sitter group based Yang–Mills theories are shown
to be producing either Ashtekar formulation of gravity (Nieto et al., 1994) or
Einstein–Cartan version of general relativity (Botta Cantcheff, 2002).

It is a remarkable result of differential geometry that certain global features
of a manifold are determined by some local invariant densities. These topological
invariants have an important property in common—they are total divergences
and in any local theory these invariants, when treated as Lagrangian densities,
contribute nothing to the Euler–Lagrange equations. Hence, in a local theory only
few parts, not the whole part, of these invariants can be kept in a Lagrangian
density. Recently, in this direction, a gravitational Lagrangian has been proposed
(Mahato, 2002), where a Lorentz invariant part of the de Sitter Pontryagin density
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has been treated as the Einstein–Hilbert Lagrangian. By this way, the role of torsion
in the underlying manifold has become multiplicative rather than additive one and
the Lagrangian looks like torsion ⊗ curvature. In other words, the additive torsion
is decoupled from the theory but not the multiplicative one. This indicates that
torsion is uniformly nonzero everywhere. In the geometrical sense, this implies
that microlocal spacetime is such that at every point there is a direction vector
(vortex line) attached to it. This effectively corresponds to the noncommutative
geometry having the manifold M4 × Z2, where the discrete space Z2 is just not the
two-point space (Connes, 1994) but appears as an attached direction vector. In this
paper, we shall try to establish the ‘constancy’ of the gravitational constant under
the background of a scalar field φ which is either localized at laboratory scale
or connected to the local universal scale factor of an isotropic and homogeneous
universe and, in particular, also try to derive the power law of the cosmic energy
density with respect to the local scale factor.

2. PONTRYAGIN DENSITY, SCALAR FIELD
AND GRAVITY LAGRANGIAN

Cartan’s structural equations for a Riemann–Cartan spacetime U4 are given
by (Cartan, 1922, 1924)

T a = dea + ωa
b ∧ eb (1)

Ra
b = dωa

b + ωa
c ∧ ωc

b, (2)

here ωa
b and ea represent the spin connection and the local frames respectively.

In U4 there exists two invariant closed four forms. One is the well-known
Pontryagin (Chern and Simons, 1974, 1971) density P and the other is the less-
known Nieh-Yan (1982) density N given by

P = Rab ∧ Rab (3)

and

N = d(ea ∧ T a)

= T a ∧ Ta − Rab ∧ ea ∧ eb. (4)

The minimal Lagrangian density of a spin− 1
2 field ψ with an external gravi-

tational field with torsion, is given by (Mielke, 2001)

LD = i

2
{ψ∗γ ∧ Dψ + Dψ ∧∗ γψ} +∗ mψψ − 1

4
A ∧ ψγ5

∗γψ, (5)

where the exterior covariant derivative D is torsion free, A is the axial vector part
of the torsion two form, γ = γµ dxµ = γae

a and ∗ is the Hodge duality operator.
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Therefore, considering the source in the matter Lagrangian, we can simply assume
that the torsion is given by an axial vector only.

In presence of axial vector torsion, one naturally gets the Nieh-Yan density
from (4)

N = −Rab ∧ ea ∧ eb = −∗Nη, (6)

where

η := 1

4!
εabcde

a ∧ eb ∧ ec ∧ ed (7)

is the invariant volume element. It follows that ∗N , the Hodge dual of N, is a scalar
density of dimension (length)−2.

We can combine the spin connection and the vierbeins multiplied by a scalar
field together in a connection for SO(5, 1), in the tangent space, in the form

WAB =
[

ωab φea

−φeb 0

]
, (8)

where a, b = 1, 2, . . . , 4; A,B = 1, 2, . . . , 5 and φ is a variable parameter of
dimension (length)−1 and corresponds a local length scale. In some earlier works
(Chandia and Zanelli, 1977; Mahato, 2002, 2004), φ has been treated as an inverse
length constant. With this connection, we can obtain SO(4, 1) Pontryagin density as

FAB ∧ FAB = Rab ∧ Rab + 2φ2d(ea ∧ Ta) + 4φdφ ∧ ea ∧ Ta

= P + dCT φ, (9)

where

CT φ := 2φ2ea ∧ Ta, (10)

P := −Ra
b ∧ Rb

a = −(
R̄a

b ∧ R̄b
a + 2R̄a

b ∧ R̂b
a + R̂a

b ∧ R̂b
a

)
, (11)

R̄b
a = dω̄b

a + ω̄b
c ∧ ω̄c

a, (12)

R̂b
a = dT b

a + ω̄b
c ∧ T c

a + T b
c ∧ ω̄c

a + T b
a ∧ T c

a (13)

and

T a
b = ωa

b − ω̄a
b s.t. T a

b ∧ eb = T a (14)

Now −R̄a
b ∧ R̄b

a , the purely Riemannian torsion-less part of P, is a closed
four form and is given by

−R̄a
b ∧ R̄b

a = −d

(
ω̄a

b ∧ R̄b
a − 1

3
ω̄a

b ∧ ω̄b
c ∧ ω̄c

a

)
= dCR (15)

where

CR = −(
ω̄a

b ∧ R̄b
a − 1

3
ω̄a

b ∧ ω̄b
c ∧ ω̄c

a

)
.
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With the hypothesis that only the axial vector part of the torsion is present in the
physical world, we can write

T a = eeµTµναdxν ∧ dxα,

T ab = eeµebνTµναdxα

(16)

and

∗A = T = 1

3!
Tµναdxµ ∧ dxν ∧ dxα s.t. N = 6dT (17)

In this framework, we see that

R̂a
b ∧ R̂b

a = −2d

(
A ∧ dA − 1

3
T a

b ∧ T b
c ∧ T c

a

)
= −dCT (18)

and

2R̄a
b ∧ R̂b

a = −4RdT + 8Rdab∇̄(Abηa) = 8d(GabAbηa) = −dCRT (19)

where

ηa = 1

3!
εabcde

b ∧ ec ∧ ed,

CT = 2

(
A ∧ dA − 1

3
T a

b ∧ T b
c ∧ T c

a

)

and CRT = −8(GabAbηa).

Here ∇̄ is the torsion-free covariant derivative; R, Rab and Gab are, respectively,
corresponding Ricci scalar, Ricci tensor and Einstein’s tensor.

Hence, we see that the SO(4, 1) Pontryagin density in U4 is the sum of four
closed four forms, given by

FAB ∧ FAB = dCR + dCT + dCRT + dCT φ. (20)

Since all these four forms are total divergences, they yield nothing in any local the-
ory when treated as Lagrangian densities. Hence, to have an effective field theory,
however, we may consider some Lorentz invariant parts of them as Lagrangian
densities. So, here we heuristically propose a Lagrangian density that combines a
part of dCRT with a part of dCT φ as follows

L0 = (R − βφ2) dT = −1

6
(R − βφ2)∗Nη (21)

where β is a dimensionless coupling constant.
So far SO(3, 1) invariance is concerned, torsion can be separated from the

connection as the torsional part of the SO(3, 1) connection transforms like a tensor,
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i.e. when vierbeins also transform like SO(3, 1) tensors in a broken SO(4, 1)
gauge theory. In this direction, it is important to define a torsion-free covariant
differentiation through a field equation involving the connection and the vierbeins
only. So we introduce Lagragian density L1, given by

L1 =∗ (ba ∧ ∇̄ea)(ba ∧ ∇̄ea), (22)

where ∇̄ represents covariant differentiation with respect to a SO(3, 1) connection
one form ω̄ab and ba is a two form with one internal index and of dimension
(length)−1. If we treat ba as Lagrange multiplier then it ensures that ∇̄ represents
torsion-free covariant differentiation. By this way, torsion has become decoupled
from the connection part of the theory. It has become independent of the one form
ea , in particular, owing to its fundamental existence as a metric-independent tensor
in the affine connection in U4, we treat here the three form T = 1

3!e
a ∧ Ta as more

fundamental than the one form T ab = ωab − ω̄ab.2

Now we add another Lagrangian density L2 containing a nonlinear kinetic
term, given by

L2 = −f (φ) dφ ∧∗ dφ − h(φ)η (23)

where f (φ) and h(φ) are unknown functions of φ whose forms are to be determined
subject to the geometric structure of the manifold.

At last, we are in a position to define the total gravitational Lagrangian density
in empty space, as,

LG = L0 + L1 + L2

= −1

6
(∗NRη + βφ2N ) +∗ (ba ∧ ∇̄ea)(ba ∧ ∇̄ea)

−f (φ) dφ ∧ ∗dφ − h(φ)η, (24)

where ∗ is Hodge duality operator, N = 6dT ,Rη = 1
2 R̄ab ∧ ηab. and ηab =∗ (ea ∧

eb). To start with this Lagrangian we have altogether 69 independent components
of the field variables ea , T , ω̄ab, φ and ba . The geometrical implication of the first
term, i.e. the torsion ⊗ curvature3 term, in the Lagrangian LG has been already
discussed in Section 1.

2 One may raise the aesthetic question of identifying T with the torsion. This can be properly addressed
if we introduce two separate SO(3, 1) connections ωab and ω̄ab , and replace the Lagrangian L2

by the gauge invariant expression ∗[ba ∧ (
ω

∇ ea − T a)][ba ∧ (
ω

∇ ea − T a)] +∗ [ca ∧ (ωab − ω̄ab −
T ab)][ca ∧ (ωab − ω̄ab − T ab)], where the three form ca is another Lagrange multiplier of proper
dimension and

ω

∇ is covariant differentiation w.r.t. the connection ω.
3 An important advantage of this part of the Lagrangian is that it is a quadratic one with respect to

the field derivatives and this could be valuable in relation to the quantization program of gravity like
other gauge theories of QFT.
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3. EULER–LAGRANGE EQUATIONS AND
GRAVITATIONAL CONSTANT

The Lagrangian LG which is defined in the previous section, is only Lorentz
invariant under rotation in the tangent space where de Sitter boosts are not per-
mitted. As a consequence, T can be treated independently of ea and ω̄ab. Then
following Hehl et al. (1995), we independently vary ea , ∇̄ea , dT , R̄ab, φ, dφ and
ba , and find

δLG = δea ∧ ∂LG

∂ea
+ δ∇̄ea ∧ ∂LG

∂∇̄ea
+ δdT

∂LG

∂dT
+ δR̄ab ∧ ∂LG

∂R̄ab

+ δφ
∂LG

∂φ
+ δdφ ∧ ∂LG

∂dφ
+ δba ∧ ∂LG

∂ba
(25)

= δea ∧
(

∂LG

∂ea
+ ∇̄ ∂LG

∂∇̄ea

)
+ δT ∧ d

∂LG

∂dT
+ δω̄ab

∧
(

∇̄ ∂LG

∂R̄ab
+ ∂LG

∂∇̄ea
∧ eb

)
+ δφ

(
∂LG

∂φ
− d

LG

∂dφ

)

+ δba ∧ ∂LG

∂ba
+ d

(
δea ∧ ∂LG

∂∇̄ea
+ δT

∂LG

∂dT

+ δω̄ab ∧ ∂LG

∂R̄ab
+ δφ

∂LG

∂dφ

)
(26)

Using the form of the Lagrangian LG given in (24), we get

∂LG

∂ea
= −1∗

6
N (2Ra − Rηa) −∗ (bb ∧ ∇̄eb)2ηa

−f (φ)[−2∂aφ∂bφηb + ∂bφ∂bφηa] − h(φ)ηa (27)

∂LG

∂(∇̄ea)
= 2∗(ba ∧ ∇̄ea)ba (28)

∂LG

∂(dT )
= R − βφ2 (29)

∂LG

∂R̄ab
= − 1

24
∗Nεabcde

c ∧ ed = − 1

12
∗Nηab (30)

∂LG

∂φ
= −1

3
βφN − f ′(φ)dφ ∧∗ dφ − h′(φ)η (31)

∂LG

∂dφ
= −2f ∗dφ (32)
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∂LG

∂ba
= 2∗(bb ∧ ∇̄eb)∇̄ea (33)

where

Ra := 1

2

∂(Rη)

dea
= 1

4
εabcdR̄

bc ∧ ed (34)

and ′ represents derivative w.r.t. φ.
From earlier equations, Euler–Lagrange equations for ba gives us

∇̄ea = 0 (35)

i.e. ∇̄ is torsion free. Using this result in (27) and (28) we get

∂LG

∂ea
= −1∗

6
N (2Ra − Rηa) − f (φ)[−2∂aφ∂bφηb

+ ∂bφ∂bφηa] − h(φ)ηa (36)

∂LG

∂(∇̄ea)
= 0 (37)

Hence, Euler–Lagrange equations of ea , T and ω̄ab, using (26), (29) and (30) give
us

1

6

∗
N (2Ra − Rηa) + f (φ)[−2∂aφ∂bφηb + ∂bφ∂bφηa]

+h(φ)∂ηa = 0 (38)

d(R − βφ2) = 0 (39)

∇̄(∗Nηab) = 0 (40)

From (31) and (32), the Euler–Lagrange equations for the field φ is given by

−1

3
βφN + f ′(φ) dφ ∧∗ dφ − h′(φ)η + 2f d∗dφ = 0. (41)

Using (35) in (40)

d∗N = 0 (42)

From Eqs. (39) and (42) we can write

∗N = 6

κ
and R − βφ2 = λ (43)

where κ and λ are integration constants having dimensions of (length)2 and
(length)−2 respectively. Then using properties ea ∧ ηb = δa

bη and Ra = −Gb
aηb

where Gb
a := Rb

a − 1
2Rδb

a in (38), we get

Ra = κ

[
f ∂aφ∂bφ + h

2
δb

a

]
ηb, (44)
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such that,

Gb
a = −κ

[
f ∂aφ∂bφ + h

2
δb

a

]
, (45)

and

Rη = κ[f dφ ∧∗ dφ + 2hη]. (46)

From (43) and (46) we get[
1

κ
(βφ2 + λ) − 2h

]
η = f dφ ∧∗ dφ

= (f ∂cφ∂cφ)η (47)

Eliminating dφ ∧∗ dφ from (41) and (47), we get

2

κ
βφη + f ′

f

[
1

κ
(βφ2 + λ) − 2h

]
η − h′(φ)η + 2f d∗dφ = 0. (48)

4. φ IS LOCALIZED AT LABORATORY SCALE

Here, we study the case where φ is a local scalar field that vanishes at
space infinity and has a quadratic Lagrangian. So we assume f = 1

2 , β = c2
φ

2 and
h = constant in (24), where c2

φ is the dimensionless torsion × φ coupling constant,
and then (45) and (48) reduce to,

Gb
a = κ

[
1

2
∂aφ∂bφ + h

2
δb

a

]
, (49)

d∗dφ = − 1

κ
c2
φφη. (50)

Using the boundary condition of φ at space infinity on (47) we get

dφ ∧∗ dφ = 1

κ
c2
φφ2η. (51)

where λ = 2hκ . Equation (50) is the correct field equation of a massive scalar
field φ of mass mφ , provided, we define the mass by the following equation

mφ = cφ√
κ

. (52)

This last equation shows that through the NY-term, torsion is not only connected
to the gravitational constant, it also gives mass of a scalar field through the
torsion × φ interaction term. Hence, the gravitational constant and the mass of a
scalar field have the same geometrical origin in the Riemann–Cartan space U4.
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5. φ AND FRW COSMOLOGY

Here, we study the case where φ represents the local energy scale in the
background of FRW cosmology. In this background, we assume φ to be a variable
function of time only. Then, w.r.t. external indices, (45) becomes

G00 = −κ

(
f φ̇2 + h

2
g00

)

Gij = −κ

(
h

2
gij

)
where i, j = 1, 2, 3. (53)

Here, we shall try to solve Eqs. (47) and (48) under the isotropic and homogeneous
cosmological background of a universe where the metric tensor is given by the
FRW metric

g00 = −1, gij = δij a
2(t) where i, j = 1, 2, 3; (54)

such that

e = √− det(gµν) = a3 (55)

With this assumption, Eq. (47) reduces to

f φ̇2 = − 1

κ
(βφ2 + λ) + 2h. (56)

Now, with the cosmological restriction on the metric as stated in (54) and the
φ-field is a function of time only, Eq. (41) reduces to

2f φ̈ + 2f
e′

e
φ̇2 + f ′φ2 − 2β

κ
φ + h′ = 0 (57)

If we eliminate φ̈ from this equation with the help of the time derivative of Eq.
(56), we get

2f
e′

e
φ̇2 = 4β

κ
φ − 3h′ or, 2

e′

e
= −

4β

κ
φ − 3h′

1
κ

(βφ2 + λ) − 2h
(58)

Now, for the FRW metric, the non-vanishing components of Einstein’s tensor (53)
are given by

G0
0 = −3

(
ȧ

a

)2

= −κ

(
β

κ
φ2 + λ

κ
− 3h

2

)

G
j

i = −
(

2ä

a
+ ȧ2

a2

)
δ

j

i = −κ
h

2
δ

j

i (59)

Positive energy condition implies both β and λ are positive constants, and from the
forms of G0

0 and G
j

i it appears that the term β

κ
φ2 represents pressure-less energy
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density, i.e. φ2 ∝ a−3 ∝ 1
e
. Putting this in (58), we get after integration

h = −γφ
8
3 + λ

2κ
(60)

where γ is a constant of dimension (length)
−4
3 . Using this functional form of h in

(56) and (59), we get

f = − 2

3κ

F ′

φF
where F (φ) = βφ2 + 3

2
γ κφ

8
3 + λ

4
(61)

G0
0 = −3

(
ȧ

a

)2

= −κ

(
β

κ
φ2 + 3γ

2
φ

8
3 + λ

4κ

)

G
j

i = −
(

2ȧ

a
+ ȧ2

a2

)
δ

j

i = κ

(
γ

2
φ

8
3 − λ

4κ

)
δ

j

i (62)

This form of G0
0 and G

j

i implies that in the present framework, at cosmic scale,
only three types of energy densities are possible, viz.

1. The pressure-less mass density ρM = β

κ
φ2 ∝ a−3,

2. The radiation density ρR = 3γ

2 φ
8
3 ∝ a−4 where pressure pR = 1

3ρR and
3. The constant vacuum energy density ρV AC. = λ

4κ
where pressure pV AC. =

−ρV AC., where β, γ and λ are all positive constants.

Hence we can write

G00 = 3H 2 = κρ,

Gij = κpa2δij where i, j = 1, 2, 3; (63)

where the Hubble’s parameter H = ȧ/a, ρ = ρM + ρR + ρV AC. and p = PR +
pV AC., such that ρ obeys, as a consequence of Bianchi identity G

µ

0;µ = 0, the
energy conservation law of Newtonian mechanics, given by the equation of state
(Carrol, 2001; Padmanabhan, 2003)

d(ρa3) = −pd(a3). (64)

Now from (62) and (63), we get after eliminating ( ȧ
a

)2 that

ä

a
= −κ

6
(ρ + 3p). (65)

Equations (63) and (65) are two well-known results of FRW cosmology (Wald,
1984). Hence, in this background, where de Sitter gauge symmetry is broken in
a Lorentz invariant way linking gravitational constant with the NY density, we
have found FRW cosmology with only three kinds of energy density. Two of these
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kinds are that of a perfect fluid where p = 0, ρ

3 and the remaining type is that of
vacuum energy where p = −ρ. At first glance, this result looks nothing new. In
standard model ρ = ρM + ρR + ρV AC. is assumed empirically, but other forms of
energy densities are not ruled out subject to the pressure–energy relation (64). But
in our present formalism, other forms of energy densities imply different forms of
the functions f and h as solutions, and this indirectly implies departure from the
FRW metric at the cosmic scale. This is not the case we are studying here.

Hence, the differential equation of the evolution of the universe can be written
from (65) as

ä

a
= −κ

6
(ρM + 2ρR − 2ρV AC.) (66)

Using present cosmological data (Spergel et al., 2003; Filippenko, 2004; Peacock,
2003), this equation ultimately implies accelerating universe. Then a reasonable
dynamical age of the universe can be estimated to be 14.2 ± 1.7 Gyr. (Riess, et al.,
1998), consistent with the ages determined by using various other techniques
(Filippenko, in press).

6. DISCUSSION

Recent cosmological evidence (Filippenko, 2004; Tonry et al., 2003) sug-
gests that cosmological constant seems to be present evermore in the cosmo-
logical data. Theoretically, cosmological constant appears when one considers a
four-dimensional manifold that is due to compactification4 of a five-dimensional
manifold having the signature of a (anti)de Sitter spacetime (Padmanabhan, 2003).
This implies that in the local tangent space the gauge group structure is either
SO(4, 1) or SO(3, 2). To keep Lorentz invariance intact, (anti)de Sitter boost is for-
bidden in the tangent space. So it is justified, in the present contest, to consider the
Lagrangian as a combination of some SO(3, 1) invariant parts of the full SO(4, 1)
Pontryagin density.

At first, we summaries the main results obtained in this article. These are as
follows.

1. The gravitational constant is related to the NY density by the relation
N = − 6

κ
η.

2. Mass of a localised scalar field φ is given by the relation mφ = cφ√
κ

, where
c2
φ is the dimensionless torsion × φ coupling constant. By this way, we get

a beautiful analogy of Coulomb’s law of electro dynamics in Newtonian
gravity. It can be easily checked that, with our previously described in-
terpretation of mass, the Newtonian force between two gravitating point

4 That is, using four-dimensional stereographic coordinates.



Torsion, Scalar Field, Mass and FRW Cosmology 91

masses can be written as 
F = −c1c2

r
r3 , where c2

1, c2
2 are the two respec-

tive torsional coupling constants of the corresponding masses when their
dynamics is described by scalar fields in U4.

3. When φ represents the local energy parameter at cosmic scale, then ρM =
β

κ
φ2, ρR = 3γ

2 φ
8
3 and ρV AC. = λ

4κ
. Other kinds of energy densities are dis-

allowed in this scenario. Here, again, β is the dimensionless torsion × φ

coupling constant. Also, κ together with λ are constants of integration. γ

is a constant having dimension (length)−
4
3 . If M and V be, respectively,

the total mass and volume of the universe then β

κ
= M2 and ρM = M

V
;

this ultimately gives the local cosmological inverse length parameter
φ = 1√

MV
.

It is important to note that, in our present formalism, the only assumption is
that the torsion is represented by an axial vector and the corresponding Lagrangian
is a combination of two particular terms of the SO(4, 1) Pontryagin density in such
a way that the SO(3, 1) invariance of the theory is maintained. The presence of
the axial vector at each spacetime point suggests that the spacetime manifold
is characterized by the presence of a ‘direction vector’ (vortex line) attached to
each point which is the source of torsion. It may be remarked that the degrees
of freedom of this theory is minimally extended from that of Einstein–Hilbert
theory with torsion contributing to the additional degree. As a result, κ has got its
definite geometrical meaning in U4 space in comparison to their standard meaning
of being simply constants such that κ is inversely proportional to the Nieh-Yan
density. One of the remarkable features of the Lagrangian LG is that 1

κ
is not

a dimensional coupling constant, 1
κ

together with λ are constants of integration
and they might have got there fixed values in the Early Universe just after the
bulk matter was created when the source of gravity became able to be connected
with the scalar field φ in the cosmological scale of a FRW universe. Further,
the constancy of κ depends on the form of the source terms in LG such that
these terms are independent of the SO(3, 1) connection. Hence, separation of
the tensorial torsion part from the SO(3, 1) connection, which is possible only
when the SO(4, 1) invariance is broken, and keeping the source independent
of the SO(3, 1) connection gives us constancy of κ . In other words, Lorentz
invariance, in a broken de Sitter gauge theory, is associated with the constancy of
κ . This constancy of κ also makes it possible to define mass = cφ√

κ
where c2

φ is the
torsion× matter field coupling constant. Moreover, when we consider the metric
to have the form of the FRW cosmology, then only three kinds of energy densities
are possible representing mass, radiation and vacuum energy. This implies that,
in this frame work, other forms of energy densities can be obtained as solutions
when the metric differs from its standard FRW form. It is to be mentioned here
that the scalar field φ of this paper is different from the Brans-Dicke scalar field.
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According to Brans-Dicke theory, the value of G = c2κ
8π

is determined by the value
of the Brans-Dicke scalar field φ. The Brans-Dicke version of Einstein–Cartan
theory, with nonzero torsion and vanishing non-metricity, was discussed by many
authors (Rauch, 1984; German, 1985; Kim, 1986). In these approaches, φ acts
as a source of torsion (Berthias, 1986). But in our approach, φ is connected to
a local energy parameter. In laboratory scale, φ represents a massive scalar field
where the mass arises due to torsion × matter interaction. In cosmic scale, the
FRW geometry gives us φ = 1√

MV
.

In a recent paper (Mahato, 2002), it has been shown that, in the gravity without
metric formalism of gravity, when one performs a particular canonical transforma-
tion of the field variables, CP-violating θ -term appears in the Lagrangian together
with the cosmological term. This supports the finding of this paper when we
consider that the torsion, being an axial vector, has a certain role to play in CP
violation. Indeed, the topological θ -term of ‘gravity without metric formalism’
is linked with the topological Nieh-Yan density of U4 geometry. In this context,
we can consider the finding of some other work (Mullick, 1995) when the gauge
group is SL(2, C), which is the covering group of SO(3, 1), where torsion has
been shown to be linked with CP violation. Thus, arrow of time plays a significant
role in the geometrical origin of torsion and hence of the gravitational constant. It
is to be noted here that the β-term, which is the torsion–φ-field interaction in the
Lagrangian LG, ultimately gives us the mass-energy density in (61) and as t → ∞
we get G00/κ → the constant energy density of the de Sitter space = λ

4κ
. Hence,

our universe, which is presently accelerating, is heading towards a universe of
constant energy density and infinite radius.
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